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Hui Zhang

Abstract—A repository of router configuration files from
production networks would provide the research community
with a treasure trove of data about network topologies, routing
designs, and security policies. However, configuration files have
been largely unobtainable precisely because they provide detailed
information that could be exploited by competitors and attackers.
This paper describes a method for anonymizing router config-
uration files by removing all information that connects the data
to the identity of the underlying network, while still preserving
the structure of information that makes the data valuable to
networking researchers.

Anonymizing configuration files has unusual requirements,
including preserving relationships between elements of data,
anonymizing regular expressions, and robustly coping with more
than 200 versions of the configuration language. Conventional
tools and techniques are poorly suited to the problem. Our
anonymization method has been validated with a major carrier,
earning unprivileged researchers access to the configuration files
of thousands of routers in hundreds of networks. Through
example analysis, we demonstrate that the anonymized data
retains the key properties of the network design. The paper sets
out techniques that could be used in an attempt to break the
anonymization, and it concludes our anonymization techniques
are most applicable to enterprise networks, because the large
number of enterprises and the difficulty of probing them from
the outside make it hard to recognize an anonymized network
based solely on publicly-available information about its topology
or configuration. When applied to backbone networks, which are
few in number and many of whose properties can be publicly
measured, the anonymization might be broken by fingerprinting
techniques described in this paper.

Index Terms—Data anonymization, router configuration

I. INTRODUCTION

BY FAR the best source of design information available
today for an IP network is the set of configuration
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files running on its routers.1 Each of these files, known as
a “config”, contains the complete set of commands used
to define the behavior of that single router. Taken together
over all the routers, the set of configs for a network define
the overall behavior of the network. Access to the config
sets for production networks would bring tremendous benefits
to a wide group of networking researchers. For example,
an accurate IP-level network topology can typically be di-
rectly derived from the configs. The parameters governing
the intricate interactions among routing protocols and policies
that could only be estimated otherwise are explicit in the
configuration files, making it possible to develop more precise
analysis techniques for evaluating essential network properties
such as the robustness of the routing design [1].

However, configs are held as closely-guarded secrets for
some of the same reasons that make them valuable for
research. They reveal internal details of the network design,
and potentially expose business secrets such as the owner’s
organizational structure and clientele. They show where a
company has resources and capacity, and where its network
bottlenecks are. Further, they may expose potentially embar-
rassing configuration mistakes and security vulnerabilities that
could be remotely exploited. Without a high assurance that
sensitive information will not leak, a network owner will
hesitate to grant access to its configs to anyone outside its
staff.

Thus, an important question arises: How can config sets
be sanitized to avoid leaking sensitive information? In some
scenarios, e.g., for controlling the scope of access by a trusted
group, it may be sufficient to remove just specific types of
information from the configs, e.g., the identity of the network’s
customers, or the geographical locations of its facilities. In this
paper, we investigate the feasibility of anonymizing a config
set – hiding the identity of owning organization itself. Such
anonymization provides the most general form of protection
because severing the link between the configuration files and
the identity of the network owner means that any information
learned from the configurations cannot be exploited against
the owner. Fortunately, for many networks the technical en-

1Ultimately, we believe that researchers should not need to work at the level
of the configs themselves, but with a higher-level representation that abstracts
away the idiosyncrasies of particular configuration languages and exposes the
critical information. However, developing such a data model is an extremely
difficult task, one that must be driven and validated by examples of how
configurations are used in real networks. We see our work as the first logical
stepping stone to the creation of a high-level representation of configuration
data.
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gineering details of the network and its routing design, the
parts most interesting to the research community, are not
considered business secrets or competitive advantages of the
owning organization. This means the processing of the config
sets need not necessarily strip out the information with value
to networking researchers, if a technique can be developed
that anonymizes the owner of the files while retaining this
information.

We present a detailed formulation of the problem of
anonymizing router configuration file sets. We qualify the two
equally important but often competing requirements – owner-
identity anonymization and relationship preservation – and
outline a methodology to validate that they are met. We iden-
tify key challenges in developing an acceptable anonymization
method and consider potential attacks against it. Guided by
this formulation, we have crafted a first working method for
config anonymization2.

Anonymizing configs is challenging for several reasons:
First, there are numerous ways in which configs can leak
information that would allow an attacker to break the anonymi-
zation. For example, public AS numbers and IP addresses can
be easily connected with the owner. Even the number and lo-
cation of peering points to other networks that can be gleaned
from configs might uniquely identify a network. Second, there
is no consistent grammar for the configuration language, so
conventional compiler tools and techniques are poorly suited
to the problem. Third, the anonymization needs to support
a diverse set of research goals. Fourth, the anonymization
process must be fully automated to avoid human errors and
gain the acceptance of network operators.

The anonymization method described in this paper makes
an important step towards overcoming these challenges. It
has been validated with a major carrier, earning unprivileged
researchers access to the configuration files of thousands of
routers in hundreds of enterprise and backbone networks, and
used by three other organizations in sharing their config sets.
A complete implementation of the anonymizer is publicly
available and open to improvement by the community [2].

II. THE NATURE OF CONFIGURATION FILES

Figure 1 shows command lines like those found in a pre-
anonymized configuration file. Typical configs in production
networks vary from 50 to 10,000 lines — in our dataset
of 7655 routers, the 25th percentile was 183 lines and 90th
percentile was 1123 lines.

Lines 8–14 define two interfaces and assign them IP
addresses, with free text comments used to indicate where
these interfaces connect. Line 16 defines a BGP process and
configures it as a speaker for the public Autonomous System
Number (ASN) 1111. Lines 18–20 declare an EBGP session
with a router at 66.253.160.68, presumably inside the UUNET
network as the remote AS has UUNET’s ASN (701). Lines
22–28 define the route-maps used by BGP in terms of the
access-lists defined in lines 30–32. Line 30 selects IP ad-
dresses matching 1.1.1.0/24. Line 31 uses a regular expression

2We have implemented our approach for Cisco IOS, but we believe the
techniques are directly applicable to JunOS and other router configuration
languages as well.

to match any BGP community attribute value coming from
UUNET (701) between 7100 and 7599, and line 32 uses
another regular expression to match any AS path that contains
AS 1239, or one of UUNET’s non-US ASes (702-705).

The config illustrates several common relationships between
information elements. The uses relationship between the BGP
process in line 19 and the routing policy definition in lines
22–25 is established by the name “UUNET-import”. The RIP
routing protocol in line 35 is configured to run over the
interface in line 8 by the subnet contains relationship between
the prefix 1.0.0.0/8 and the address 1.1.1.1.

Anonymizing this configuration requires removing or trans-
forming: (1) the comments; (2) the owner’s public AS number
(here 1111) (3) the publicly routable IP addresses (e.g.,
1.1.1.0/24), all of which directly identify Foo Corp; and (4)
all data about external peers (e.g., neighbor IP addresses,
AS numbers, route-map names, community attributes), which
while (probably) innocuous individually could build a picture
identifying Foo Corp.

III. CHALLENGES

In this section, we first define the problem of config
set anonymization. We then provide more detail about the
specific challenges that we had to address while developing a
working method of config anonymization. The difficulties of
anonymizing configs can be broken into two broad classes of
challenges. First is finding all the elements of a configuration
that can leak identity information. Second is anonymizing
each component while preserving the relationships between
information in the configs.

A. The Problem of Config Anonymization
In config set anonymization, the configuration files from a

set of routers in a network that belongs to an organization are
processed using the anonymization method described in this
paper and then made publicly available. The goal of anonymi-
zation is to establish two properties for the anonymized config
set. First, minimize the confidence with which an attacker can
label a publicly released config set with the identify of the
organization that owns the routers. Second, each anonymized
config set must be structurally and functionally identical to
the organization’s network, such that if a network were to
be created with similar hardware and configured using the
information in the anonymized config set, it would behave as
the real network does.

As a caveat to the second property, anonymization can
preserve only those aspects of the network that are explicit
in the text of the configs. For example, it cannot preserve
the latency between routers in the configs since latency is not
explicitly described in the configs.

We assume the attacker has the following capabilities. It
has access to any public information or attributes for a large
number of networks. It is capable of sending probe traffic
across the public Internet from a wide variety of location,
and so has knowledge of attributes discoverable by external
observation (e.g., RocketFuel [3]). The attacker also has access
to a large number of anonymized configuration sets, which
may or may not overlap with the set of networks for which
the attacker has public information.
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1 hostname cr1.lax.foo.com
2 !
3 banner motd �ˆC
4 FooNet contact xxx@foo.com
5 Access strictly prohibited!
6 �ˆC
7 !
8 interface Ethernet0
9 description Foo Corp�’s LAX Main St offices
10 ip address 1.1.1.1 255.255.255.0
11 !
12 interface Serial1/0.5 point-to-point
13 description cr1.sfo-Serial3/0.2
14 ip address 66.253.32.85 255.255.255.252
15 !
16 router bgp 1111
17 redistribute rip
18 neighbor 66.253.160.68 remote-as 701
19 neighbor 66.253.160.68 route-map UUNET-import in
20 neighbor 66.253.160.68 route-map UUNET-export out
21 !
22 route-map UUNET-import deny 10
23 match as-path 50
24 match community 100
25 route-map UUNET-import permit 20
26 route-map UUNET-export permit 10
27 match ip address 143
28 set community 701:1234
29 !
30 access-list 143 permit 1.1.1.0 0.0.0.255
31 ip community-list 100 permit 701:7[1-5]..
32 ip as-path access-list 50 permit (_1239_|_70[2-5]_)
33 !
34 router rip
35 network 1.0.0.0

Fig. 1. Excerpts of a router configuration file.

B. Finding Elements to Anonymize
At first impression, it might seem that parsing the configur-

ation is the simplest way to find the elements of a config that
must be anonymized. However, attributes of the underlying
grammar make existing compiler tools poorly suited for the
task.
No explicit grammar is available: While somewhat sur-
prising an explicit and complete grammar does not appear
to be publicly available. Moreover, small, but syntactically
significant changes occur between Cisco Internet Operating
System (IOS) versions and each type of device supports
slightly different commands. All but the most trivial networks
have routers running different versions of IOS (the routers in
our dataset run over 200 different IOS versions). Consequently,
even a complete grammar for a particular version would
typically not be applicable for all routers in a study — not
even within a single network.
Grammar is poorly suited for standard compiler tools:
The language interpreted by the Cisco Command Line In-
terface (CLI) is described in manuals by a regular expression
grammar, and thus in principle is of relatively low complexity.
However, in contrast to the grammar of programming lan-
guages, IOS supports a huge set of commands,3 each specified
as a separate grammar rule, and it recognizes a very large
set of keywords that appear in different orders depending on
the command. Inconsistencies and ambiguities abound. For
example, sometimes parameters are positional and sometimes
attribute-value pairs; other commands allow multiple values

3Over 3000 commands for Authorization, Authentication and Accounting
(aaa) alone.

for some parameters. Even space is not consistently a separa-
tor. These specifics furthermore depend on the particular IOS
version, resulting in all combinations and variations potentially
appearing in a single network.
Ensuring completeness is difficult: The huge number of
distinct commands not only make the CLI language prob-
lematic for traditional compiler tools, but would also make
it very challenging to ensure correct anonymization through
annotation of the complete grammar. Even if the complete
grammar were successfully annotated, the effort would bring
questionable value, as only a small fraction of the commands
are of interest for the study of IP networks. This fact highlights
a key advantage of our approach, as our anonymization
operates across commands mostly without grammatical or
semantic discrimination, as explained in Section IV.

C. Relationship Preserving Anonymization
Each element of a configuration that is altered to hide the

identity of the owner must be anonymized in a way that
preserves the relationship between elements, even when not all
relationships are known at anonymization time. Even several
known relationships are particularly challenging to maintain.

Preserving the structure of addresses: Configuration files
make extensive use of the subnet contains relationship to
associate elements of the configuration (e.g., the RIP routing
protocol in line 35 and the interface in line 10), so the
relationship must be preserved by anonymization.

There are also restrictions on how addresses are anony-
mized. Some addresses used in configuration files have special
meanings and must not be modified at all, e.g., netmasks in
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lines 14 and 30 (255.255.255.252 and 0.0.0.255). Also, older
commands, such as those for configuring RIP and EIGRP,
implicitly assume classful IP addresses, so the mapping must
also be class preserving: mapping addresses with class A pre-
fixes to addresses with another class A prefix. Additionally, it
improves human readability in the post-anonymization configs
if subnet addresses (i.e., addresses with a host part of all zeros
such as 128.2.0.0) are mapped to other subnet addresses (e.g.,
135.9.0.0).

Hashing public AS numbers: Although most integers
found in configuration files do not leak information, AS
numbers can. Anonymizing individual AS numbers with a
random permutation is trivial, but they can also be referenced
by regular expressions, as shown in lines 31–32 of Figure 1,
which then must be rewritten to reflect the permuted values.

Maintaining referential integrity: All identifiers must be
anonymized in a consistent manner so that, for example, the
uses relationship between the routing policy statement at line
19 and the policy definition at lines 22–25 created by the
shared identifier “UUNET-import” is maintained.

IV. ANONYMIZATION METHOD

We first describe our general approach, which anonymizes
most parts of the configuration files, and then explain in
detail how particularly troublesome or important aspects of
the configurations are handled.

A. Basic Method

Being unable to know a priori which strings can leak
information about the identity of the network owner, the
most conservative approach is to cryptographically hash every
string that is not known to be innocuous. A pass-list of
“unprivileged” tokens was created by building a web-walker
that string scraped the Cisco IOS command reference guides.
In theory, most Cisco keywords will appear somewhere in the
guides, and non-keywords used in the guides are so common
they cannot leak information. All non-numeric tokens found
in the configurations are checked against this pass-list, and
any tokens not found are hashed using SHA1 digests [4]:
this anonymizes the names of class-maps, route-maps, and
any other strings that could hold privileged information. All
IP addresses are hashed using a modified version of the
tcpdpriv algorithm [5]. Our version of the algorithm preserves
the important properties of IP address relationships that are
fundamental to the network design and routing logic, such as
the classes of the IP addresses in addition to longest prefix
matching. Simple integers are generally not anonymized.

B. Handling Expressions Requiring Context

While our goal is to avoid creating anonymization rules that
depend on context so that the anonymizer is robust against
different versions of IOS, there are situations which require
context to handle properly. In these situations, we add rules to
the anonymizer written using regular expressions that establish
context. In practice, we have developed a set of 28 rules that
is sufficient for anonymizing the 200-plus IOS versions we
have tested them on.

We use two rules to segment all words in the configs
into tokens before consulting the pass-list, so identifiers like
ethernet0/0 become a string “ethernet” that matches against
the pass-list and a non-alphabetic remainder “0/0” that doesn’t
need anonymization. Without this step, the string “Ether-
net0/0” would not have been found in the pass-list and would
have been hashed, destroying valuable information about the
interface type.

Although all “unsafe” words in comments would be hashed
by our basic method, the arrangement of pass-list words in
comments can still leak information. For example, “global”
and “crossing” are both in the pass-list, but the string “global
crossing” in a comment must be anonymized, as it is the
name of a major ISP. Since there is no means short of human
inspection to reliably find these leaks, we use three rules to
strip out all comments, including multi-line comments like
the banner in lines 3–6 of Figure 1. Among a dataset of 173
networks, an average of 1.5% of the words were found to be
comments and removed (90th percentile 6%).

An additional four rules are needed to anonymize miscella-
neous information, including phone numbers in dialer strings,
and so on.

C. Anonymizing IP Addresses

Two of the best prefix preserving IP address anonymization
schemes are due to Xu [6] and Minshall[5]. Xu’s has the
property that very little state must be shared to consistently
map addresses, making it amenable to parallelization, while
Minshall’s requires a data structure to store the mapping as it
is created.

However, anonymizing configs requires that the IP anon-
ymization scheme has the properties discussed earlier, such
as being class-preserving and subnet-address-preserving. We
have found that using a data-structure-based mapping scheme
makes it easier to implement these requirements. By con-
trolling how new entries are added to the data structure, we
can shape the mapping to have the needed properties while
maintaining as much of the randomness needed for security
as possible.

We use an extended version of Minshall’s original “-
a50” scheme as taken from tcpdpriv. Minshall’s original
algorithm is structure-preserving, by which we mean that it
is a mapping function M(a) that maps every IP address a
to a randomly chosen address while mantaining the property
that for every address b that shares a prefix of length l
with a, M(a) and M(b) also share a prefix of length l. To
make Minshall’s original algorithm class-preserving as well as
structure-preseving, we modify it so all “special” IP addresses
(e.g., private address space [7], netmasks, multicast addresses)
are passed through unchanged. This is challenging, as creating
an anonymization function that uses the identity function for
mapping part of the address space and M() for mapping other
parts of the address space requires dealing with collisions that
occur when the algorithm maps a non-special address a into
an address s that falls within the range of special addresses.
When such collisions occur, we recursively map s until there
is no collision, which we prove below maintains the structure-
preserving property of the algorithm.
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Fig. 2. Example of a collision while anonymizing IP addresses, caused
by the need to use the identity function to anonymize “special” blocks of IP
addresses, such as private address space and multicast addresses. Our solution
is to recursively map the address until there is no collision.

The handling of collisions is illustrated in Figure 2, where
“special” IP address blocks are shown as being mapped from
the original address space to the anonymized address space
using the identity function. Since a normal IP address a is
mapped to a randomly selected portion of the address space,
there is the potential the post-image of a, M(a), will be
inside a block of special addresses, resulting in a collision.
However, while random, the mapping function implemented
by Minshall’s algorithm is both 1-to-1 and on-to, so a is the
only address mapping to M(a). This means a is also the only
pre-image that will map to M(M(a)), and we can use that
value as the anonymized version of a. Subsequent collisions
can be resolved by another application of the M() — this will
eventually result in a mapped address that does not fall into a
special address block unless M() itself contains a cycle that
maps a special address block into sequence of special address
blocks that ultimately map back to the initial special address
block. This situation can be dealt with by restarting the entire
anonymization with a different seed to create a different M().
Since the function M() is structure preserving, M(M(...)) is
also structure preserving.

D. Anonymizing Autonomous System Numbers
The space of Autonomous System Numbers (ASNs) is

divided into public and private ranges, 1-64512 and 64513-
65536, respectively. Public ASNs need to be anonymized
because they are globally unique and the mapping between
public ASN and network owner can be obtained from many
sources.

There are no semantics and no relationships embedded
in public ASNs,4 so a random permutation can be used to
anonymize them. Since private ASNs are not globally unique
and do not leak identity information about the networks, they
are not anonymized.

There are two major challenges in anonymizing ASNs. First
is to correctly identify every appearance of an ASN in the
configuration file. For example, an ASN can appear inside a
BGP community attribute. ASNs can also appear in regular
expressions that are used in routing policies related to AS-
path attributes of BGP routes (line 32). A list of 12 rules is

4An exception is UUNET, which owns the contiguous range of ASNs from
701–705.

used to locate all the ASNs and ASN regular expressions in
the configuration files — this is the most fragile part of our
method since ASNs are syntactically indistinguishable from
simple integers. Strategies for coping with errors are discussed
in Section VII.

The second challenge in anonymizing ASNs is dealing with
ASNs that do not explicitly appear in the text of the configs,
but are accepted by regular expressions that do appear in the
configs. For example, 70[1-3] accepts ASN 701, 702, and
703. If this regexp appeared in a pre-anonymization config, it
would need to be rewritten so that the post-anonymization
version accepts whichever ASNs 701, 702, and 703 are
mapped to by the random permutation. The use of digit
wildcards and ranges in regexps dealing with public ASNs is
quite rare, appearing in two of 31 networks studied, because
there is little structure among public ASNs for the regexps
to exploit. Even among private ASNs, where the network
designer is free to impose structure, only 3 of 31 networks
use ranges in regexps dealing with private ASNs. Although
rare, we feel these cases must still be handled properly. The
use of alternation in regexps (e.g., (_701|1|1239)_.*) is very
common, appearing in 10 networks, but can be easily handled
by anonymizing each ASN individually.

We anonymize regular expressions involving digit wildcards
and ranges by leveraging automata theory [8]. Using that
terminology, the set of ASNs a regexp accepts is called the
language accepted by the regexp. Since there are only 216

ASNs in BGPv4, we can find the language accepted by the
regexp by simply applying the regexp to a list of all 216 ASNs
and seeing which it accepts. If the accepted language includes
only private ASNs, which do not need anonymization, no
changes are required to the regexp. If there are public ASNs
in the accepted language, these are all anonymized and the
challenge becomes computing a regexp that will accept this
new language. Currently, we construct a regexp that is the
alternation of all ASNs in the language. For example 70[1-3],
becomes 701|702|703 and then we anonymize 701, 702 and
703 individually. The resulting regexps could be very long, but
this is not a problem when anonymized configs are primarily
analyzed by software tools. We could use known polynomial-
time algorithms for constructing the minimum finite automata
(FA) that accepts the new language and then convert this
FA back into a regexp, but we have not had need for this
functionality.

E. Anonymizing BGP Community Attributes

BGP community attributes are usually represented by two
integers, written as 701:1234, where the first integer (701) is
an ASN and the second (1234) is an ordinary integer (for an
example, see line 28 in Figure 1). Community attributes are
normally used to inform a directly connected BGP peer how
routes carrying the attribute should be handled.

The ASN part of an attribute is located and anonymized
as discussed above. To be conservative, we must assume
that even the integer part of the attributes used by each
network are publicly known and sufficiently distinctive to
identify the network owner, so the integer part of community
attributes must also be anonymized. This represents a loss
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set of subnets S = ()
ForEach configuration file f {

S = S + Extract-Subnets(f)
}

PrepareIPAddressAnonymizationFunction(S)

ForEach configuration file f {
ForEach line l {

RemoveComments
AnonymizeIPAddresses
TokenizeLineAndAnonymizeTokens
FindAndAnonymizeASNs

}
}

Fig. 3. Pseudocode for configuration anonymizer.

of information, but we have chosen to favor anonymity over
information wherever such trade-offs must be made.

Like AS numbers, community attributes can appear in
regexps (e.g., line 31 in Figure 1), and are anonymized using
the same method as AS numbers. Five of the 31 networks
used regexps involving communities, but only two networks
used regexps with range expressions.

V. IMPLEMENTATION

We implemented the anonymization method described
above primarily in perl to maximize the portability of the
system and to leverage perl’s excellent regular expression
and text file processing capabilities. For performance reasons,
the IP address anonymization code is implemented in C, based
directly on Minshall’s code. Our current system only works
for IPv4 addresses, but the principles on which the system
is based apply equally to IPv6 addresses. Pseudocode for the
implementation is shown in Figure 3.

Anonymization begins by identifying all the IP subnets used
in any configuration file - this list of subnets will be used later
to ensure that any subnet address appearing in a configuration
file (e.g., 1.0.0.0) will map to an address ending in zeros in
the anonymized configuration file.

The system then initializes the IP address anonymization
function. Minshall’s algorithm works by mapping the 32 bits in
an IP address a31a30...a0 to randomly chosen bits a′

31a
′
30...a

′
0.

However, it records the choices it makes so that any address
b whose n most significant bits are the same as a’s is
mapped to a′

31a
′
30...a

′
31−n+1b

′
31−n...b′0, where bits b′31−n...b′0

are randomly chosen but the first n bits are the same as those
chosen for a. We make the algorithm preserve classful address
space by initializing it to map most significant bits 0 to 0 (i.e.,
class A to class A), 10 to 10 (i.e., class B to class B), 110
to 110 (i.e., class C to class C), etc.. We make it preserve the
zeros in the host part of a subnet address by iterating through
the list of extracted subnets S, sorted so that shortest netmasks
(i.e., larger subnets) are first. For each subnet with n bits of
host address, a31a30...an+1an...a0 where the bits an...a0 are
all zero, we insert a mapping to a′

31a
′
30...a

′
n+1an...a0 where

the a′ are chosen randomly and the rest of the bits are still 0.
The heart of the configuration anonymizer processes con-

figs line by line, using state variables to remove multi-line
comments.

TABLE I
EXAMPLE REGULAR EXPRESSIONS FOR IDENTIFYING IOS COMMANDS

THAT INVOLVE AS NUMBERS.

# find basic ASN
�’router\s+bgp�’
�’bgp\s+confederation\s+peers�’
�’neighbor\\s+$ipAddrPatt\\s+remote-as�’
�’neighbor\s+\w+\s+remote-as�’
�’set\s+as-path\s+[\S]+�’

# find community strings that might include ASNs
�’set\s+community�’,
�’set\s+extcommunity\s+\w+�’,
�’ip\s+community-list\s+\d+�’,

# find regular expressions that might involve ASNs
�’ip\s+as-path\s+access-list\s+\d+\s+(?:permit|deny)�’

Each line is matched against regular expressions that
identify IP addresses and any associated netmask. Any IP
addresses found are anonymized using Minshall’s algorithm
initialized as described above. Each line is then tokenized, and
any token not found in the pass list created by string scraping
the IOS manual pages is hashed using SHA1.

Finally, a set of regular expressions is run against the
line to identify uses of integers that might reveal identifying
information, such as ASNs or regular expressions involving
ASNs. Any matches are handled as described in Section IV-D.
Examples of these regular expressions are shown in Table I
— in each case, the ASN would follow the regular expression
shown. The complete list is available in the source code [2].

VI. VALIDATION OF ACCURACY

Anonymization of configuration files is potentially a lossy
process. To validate that information relevant to network
researchers is surviving the anonymization process unchanged,
we use end-to-end tests that compare attributes of the configs
pre- and post-anonymization. We developed two suites of tests
that a colleague with access to the unanonymized configura-
tion files runs over both the anonymized and unanonymized
configurations and then checks for differences in the output.

The first suite of tests verifies that independent character-
istics of the configurations are being preserved by comparing
properties such as: (a) the number of BGP speakers; (b) the
number of interfaces; and (c) the structure of the address space
(i.e., number of subnets of each size).

The second suite of tests consists of running our tools
to reverse engineer the routing design [1] of a network and
comparing the extracted designs. Extracting the routing design
makes an excellent test case, as it depends on many aspects
of the configuration files being consistent inside each file and
across all the files in the network, including physical topology,
routing protocol configuration, routing process adjacencies,
routing policies, and address space utilization.

While our tests have given us great confidence that our
anonymizer implementation preserves information related to
routing design, it is possible that other aspects of the configs
we have not tested are being altered. As more research is
conducted using anonymized configs, we expect the number
of tests in the validation suite to increase.

In general, the anonymizer is capable of preserving any
relationship between configuration data elements of which it
is programmed to be aware. However, the potential exists
for there to be implicit relationships between elements of the
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configuration data that are unknown to the anonymizer, and so
are not preserved during the anonymization. For example, it
might be “well known” that all addresses used by AS number
X have prefix Y . A network designer could conceivably
configure some router in his or her network to drop all
routes from AS X and other routers to drop all routes to
destinations with prefix Y . Using this external information
and the unanonymized configurations, it would be possible
to determine these two different configurations express the
same intent and achieve the same effect. By default, the
anonymization process will independently anonymize the AS
numbers and IP prefixes, not allowing a reader to infer that
the two mechanisms target the same AS. To preserve such
implicit relationships, it is necessary to extend the anonymizer
to maintain a database of “well-known” external information
and actively look for the relationships.

VII. POTENTIAL VULNERABILITIES

There are two general ways in which the anonymization
provided by our approach can be attacked. First, textual
information accidentally left inside a post-anonymization con-
figuration file could identify the owner of the network. Second,
it might be possible to analyze the configuration files to
determine a set of network characteristics that are so unusual
they form a unique “fingerprint” of the network. If these
characteristics can be measured externally via the public
Internet, then a search of all known networks could be made
looking for a fingerprint that matches the fingerprint of the
configs.

A. Textual Attack Based on Unanonymized Strings

It is very unlikely a textual attack could succeed against
the strings in an anonymized configuration file, as we take
the extremely conservative approach of stripping all comments
from the configs and hashing all strings except those known
to be innocuous with the cryptographically secure SHA1 hash
(salted with a secret chosen by the network owner). However,
it is possible that a non-string that carries identity information
could escape the rules we use to find and anonymize them.
AS numbers have been the greatest threat, as they are simple
integers.

Our best defense against textual attacks is an iterative
methodology. After anonymizing configs, we highlight for a
human operator lines that seem likely to leak information
(usually a tiny fraction of the configs). Lines they believe
are dangerous are used to add more rules to the anonymizer.
Our experience is that the iterations converge quickly. For
example, fewer than 5 iterations were required over 3 months
to anonymize 4.3 million lines of configuration from 7655
routers running more than 200 different IOS versions. As an
example of a leak-highlighting method, the anonymizer can
record all AS numbers it sees before hashing them, and then
grep out all lines from the anonymized configs that still include
any of those numbers.5

5This has worked well on the configs we have tried it on, although it would
work poorly for Level3 customers as Genuity’s AS number (AS 1) will appear
in many unrelated config lines.

B. Attacks on the IP Address Anonymization
Hypothetical [9] and experimental [10] attacks have been

proposed on the tcpdpriv algorithm on which our IP ad-
dress anonymization is based. Fortunately, they rely on the
frequency with which addresses appear in a dynamic packet
trace — information that is not available from anonymized
static configuration files.

However, because the IP address anonymization is structure
preserving, the number of subnets of different sizes is the
same in pre- and post-anonymization configs. This means
an attacker could construct a fingerprint of a network by
counting up how many subnets of different sizes (/30s, /29s,
/28s, etc.) appear in the anonymized configs. To determine
the identity of the network to which the configs belong,
he could then send probe packets into candidate networks
attempting to measure how many subnets of different sizes
each candidate contains from the ICMP Reply or back-scatter
packets received. Conceivably this could be done by “pinging”
every consecutive address in the address blocks announced
by the candidate network in BGP, and using heuristics such
as “most subnets have hosts clustered at the lower end of
the subnet’s address range” to guess where subnet boundaries
must lie.

Although remotely determining the address space finger-
print of a real network seems extremely challenging (or
impossible in the case of networks behind firewalls or not
reachable from the Internet), for this security analysis we will
assume it is possible. An open research question is whether
address space usage fingerprints are sufficiently unique to
enable the identification of networks. Should large numbers
of networks have roughly the same fingerprint, the risks of
this attack succeeding will be quite low.

C. Attacks Based on Style, Template, or Function
Like all code, there is a large degree of freedom in

constructing a config (which is partially what makes their
analysis so interesting to the research community). However,
this freedom admits stylistic variation that could be used as
a fingerprint, such that a well-known style could be used to
identify the authors or their organization. Many configs are
derived partially from templates, and some organizations make
these templates publicly available. Further, some backbone
networks offer unique services for their customers and these
services are publicly marketed. It would be possible to iden-
tify these networks from their configs by fingerprinting the
configurations needed to implement the unique service.

D. Attacks Based on Network Composition
Many networks consist of devices of different types run-

ning different versions of the operating system software.
The distribution of device makers, device types and software
versions could serve as a fingerprint, and device vendors might
have sufficient data to de-anonymize the configs sets of its
customers.

E. Attacks Based on Network Topology and Peering
Although we independently hash the AS numbers that

identify the peers of an anonymized network, anonymized
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Fig. 4. Design for a clearinghouse that uses the anonymization techniques
from this paper to enable researchers to access configurations via a single-
blind methodology.

configs accurately represent the number of routers at which
the anonymized network peers with other networks, and the
number of peering sessions that terminate on each of those
routers. This peering structure could serve as one form of
fingerprint that could be checked against maps made using the
RocketFuel techniques [3]. However, there are many side-door
peerings between real backbone networks that RocketFuel and
RouteViews do not see, so it is an open experimental question
for future work to determine if there is enough entropy in the
peering structures to make them useful as fingerprints.

It seems likely that peering structure can be used to fin-
gerprint backbone networks, but not edge networks. This is
because edge networks have fewer points of attachment to the
backbone and because they do not generally provide transit
service so their peering structure cannot be measured via
RocketFuel. Also, edge networks often have firewalls that drop
unsolicited probes, such as traceroutes, and so their internal
topology cannot be measured from outside.

Summarizing these vulnerabilities, until such time as the
actual risks of fingerprinting attacks can be established,
we cannot conclude that our method securely anonymizes
backbone networks. However, for the many networks which
cannot be externally fingerprinted, either because they use
firewalls or are not reachable over the public Internet, this
method appears reasonably secure against external attackers.
The remaining concern is that an insider attack, where the
probing/fingerprinting is launched from a host in the target
network, could potentially succeed. However, 10 of 31 net-
works we examined use internal compartmentalization that
would also defeat insider attacks by preventing a user at a
single host inside the network from computing a fingerprint
of the entire network. For example, some networks use NATs
to divide up the network into smaller pieces, some use routing
policy to prevent reachability between portions of the network,
and others drop traceroutes and other probe traffic.

VIII. TOWARDS A CLEARINGHOUSE OF CONFIGURATION

DATA

The motivation for our work is to create a means by
which network owners will feel comfortable making their
configuration data available to the research community.

Using the ability to anonymize router configuration files, we
propose it is time to establish a single-blind methodology for
working with private network data through a website portal.
By single-blind, we mean that the portal website serves to
keep the identity of network owners hidden from researchers
accessing the configuration files, while still allowing commu-
nication between researchers and network owners. Since net-
work owners are the parties requiring the most incentive, we
propose giving them the option of restricting which researchers
can access their configurations. We suggest the design shown
in Figure 4 that, in effect, automates the methodology we
have successfully used in gaining access to enterprise network
configurations [1].

Network owners begin participating by downloading the
configuration anonymization tools from the portal (via third-
party web traffic anonymizers if desired), and uploading their
anonymized configurations after taking whatever additional
steps they felt necessary to verify the anonymization. As the
research community develops useful analysis tools, these tools
will be added to the website so that they can be easily run on
uploaded configuration sets.

The identities of Researchers wishing to access configur-
ation will be verified in the same fashion as that used by
PlanetLab [11] and Emulab [12]. Researchers with accounts
on the portal will request access to configuration sets and be
able to download them once given permission by the network
owners — this allows the owners to retain a measure of control
over the scope of distribution of their configs. As researchers
analyze the configurations, they are likely to have questions
about the configurations. The website will enable blinded
communication between the anonymous network owners and
the researchers with third-party web traffic/email anonymizers.
In our experience, our questions were generally of the form
“is this the intended behavior, or is this a bug in the network
design?” so hopefully communication from the researchers
will be valued and answered by the network owners, although
this cannot be assured.

The motivation for researchers to use the site is clear -
access to previously unavailable configuration files. Motivating
network owners to upload configurations will be harder. We
hope that by making interesting tools available on the website
and offering the networks the potential of “free” consulting
from experienced researchers we can create sufficient value
that network owners will upload their configurations. To boot-
strap the system, we have found some network owners who
would like to share their configurations to “aid the greater
good”, but need help preparing them. An easily accessible
web portal might be sufficient to get these owners to share.

We recognize that ultimately trust will be incremental.
Some researchers may be given access to raw configs, others
to anonymized configs via a single-blind methodology, and
others only to higher-level abstractions of the data. Part of our
current research aims to define such higher-level abstractions,
and we rely heavily on data extracted from anonymized
configs to ensure our abstractions can express the diversity
found in real networks.
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IX. RELATED WORK

There is a large body of work on anonymizing packet
traces [13], [14], [15], however ours is the first we know of
to anonymize router configuration files. Both domains share
the problem of anonymizing IP addresses, but anonymization
of router configuration files must also anonymize the text of
the files while still preserving the structure of relationships
among the entities in the files. Backstrom and colleagues [16]
consider the problem of anonymizing social networks while
maintaining their structure, and argue anonymization is easily
broken. However, their attacks require knowledge of parts of
the graph. As we describe in Section VII, it will probably
be impossible to anonymize backbone networks because too
much of their external peering structure is publicly known.
This should not be a problem for enterprise networks.

Our hope that the address space fingerprint of a network
will be insufficient to uniquely identify any single network
once there is a large enough body of anonymized networks is
an example of k-anonymity as defined by Sweeney [17], and
the techniques proposed by Coull and colleagues [18] could
be used to measure the entropy of network fingerprints. Until
such time as a large body of configuration sets exists, the
anonymity of the configurations will rely on the difficulties
of computing a fingerprint for enterprise networks, which are
generally compartmentalized and not externally probe-able.

As an alternative to the anonymization and distribution
of configuration files, Dwork proposes an interactive system
whereby researchers pose questions to an analysis system
that holds the configurations files [19]. While provably-strong
privacy guarantees can be made about interactive systems, it is
not clear that the types of questions of interest to networking
researchers can be expressed in these systems.

X. SUMMARY AND FUTURE WORK

In this paper we make two contributions.
First, we have formulated the key issues of the configuration

anonymization problem, including the requirements for an
acceptable anonymization method, major areas of challenges, a
methodology for validating anonymized data, and potential se-
curity vulnerabilities. The formulation exposes essential trade-
offs between anonymization and information preservation, and
can serve as a basis for further discussions by the research
community leading to refined solutions.

Second, we provide a working solution for configuration
anonymization that meets the formulated requirements. It has
been validated with a major carrier, earning unprivileged
researchers access to the configuration files for dozens of
networks.

While both technical and organizational challenges remain
to be overcome in the creation of network configuration data
sets accessible to the research community, we are excited by
the new areas of research such data sets could open up —
areas with impacts in both networking research and network
operations. Our work on the anonymization of configurations
is intended as a first step in generating momentum towards
this goal.
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